Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Clin Infect Dis ; 2023 Apr 19.
Article in English | MEDLINE | ID: covidwho-2328287
2.
Clin Trials ; 19(6): 647-654, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1957005

ABSTRACT

BACKGROUND: The threat of a possible Marburg virus disease outbreak in Central and Western Africa is growing. While no Marburg virus vaccines are currently available for use, several candidates are in the pipeline. Building on knowledge and experiences in the designs of vaccine efficacy trials against other pathogens, including SARS-CoV-2, we develop designs of randomized Phase 3 vaccine efficacy trials for Marburg virus vaccines. METHODS: A core protocol approach will be used, allowing multiple vaccine candidates to be tested against controls. The primary objective of the trial will be to evaluate the effect of each vaccine on the rate of virologically confirmed Marburg virus disease, although Marburg infection assessed via seroconversion could be the primary objective in some cases. The overall trial design will be a mixture of individually and cluster-randomized designs, with individual randomization done whenever possible. Clusters will consist of either contacts and contacts of contacts of index cases, that is, ring vaccination, or other transmission units. RESULTS: The primary efficacy endpoint will be analysed as a time-to-event outcome. A vaccine will be considered successful if its estimated efficacy is greater than 50% and has sufficient precision to rule out that true efficacy is less than 30%. This will require approximately 150 total endpoints, that is, cases of confirmed Marburg virus disease, per vaccine/comparator combination. Interim analyses will be conducted after 50 and after 100 events. Statistical analysis of the trial will be blended across the different types of designs. Under the assumption of a 6-month attack rate of 1% of the participants in the placebo arm for both the individually and cluster-randomized populations, the most likely sample size is about 20,000 participants per arm. CONCLUSION: This event-driven design takes into the account the potentially sporadic spread of Marburg virus. The proposed trial design may be applicable for other pathogens against which effective vaccines are not yet available.


Subject(s)
COVID-19 , Communicable Diseases, Emerging , Marburg Virus Disease , Marburgvirus , Vaccines , Animals , Humans , Communicable Diseases, Emerging/epidemiology , Communicable Diseases, Emerging/prevention & control , Marburg Virus Disease/prevention & control , SARS-CoV-2
3.
Crit Care Med ; 50(7): 1051-1062, 2022 07 01.
Article in English | MEDLINE | ID: covidwho-1752195

ABSTRACT

OBJECTIVES: Prior research has hypothesized the Sequential Organ Failure Assessment (SOFA) score to be a poor predictor of mortality in mechanically ventilated patients with COVID-19. Yet, several U.S. states have proposed SOFA-based algorithms for ventilator triage during crisis standards of care. Using a large cohort of mechanically ventilated patients with COVID-19, we externally validated the predictive capacity of the preintubation SOFA score for mortality prediction with and without other commonly used algorithm elements. DESIGN: Multicenter, retrospective cohort study using electronic health record data. SETTING: Eighty-six U.S. health systems. PATIENTS: Patients with COVID-19 hospitalized between January 1, 2020, and February 14, 2021, and subsequently initiated on mechanical ventilation. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Among 15,122 mechanically ventilated patients with COVID-19, SOFA score alone demonstrated poor discriminant accuracy for inhospital mortality in mechanically ventilated patients using the validation cohort (area under the receiver operating characteristic curve [AUC], 0.66; 95% CI, 0.65-0.67). Discriminant accuracy was even poorer using SOFA score categories (AUC, 0.54; 95% CI, 0.54-0.55). Age alone demonstrated greater discriminant accuracy for inhospital mortality than SOFA score (AUC, 0.71; 95% CI, 0.69-0.72). Discriminant accuracy for mortality improved upon addition of age to the continuous SOFA score (AUC, 0.74; 95% CI, 0.73-0.76) and categorized SOFA score (AUC, 0.72; 95% CI, 0.71-0.73) models, respectively. The addition of comorbidities did not substantially increase model discrimination. Of 36 U.S. states with crisis standards of care guidelines containing ventilator triage algorithms, 31 (86%) feature the SOFA score. Of these, 25 (81%) rely heavily on the SOFA score (12 exclusively propose SOFA; 13 place highest weight on SOFA or propose SOFA with one other variable). CONCLUSIONS: In a U.S. cohort of over 15,000 ventilated patients with COVID-19, the SOFA score displayed poor predictive accuracy for short-term mortality. Our findings warrant reappraisal of the SOFA score's implementation and weightage in existing ventilator triage pathways in current U.S. crisis standards of care guidelines.


Subject(s)
COVID-19 , Organ Dysfunction Scores , Algorithms , Delivery of Health Care , Electronic Health Records , Hospital Mortality , Humans , Intensive Care Units , Prognosis , ROC Curve , Retrospective Studies , Triage , Ventilators, Mechanical
4.
Cell ; 185(1): 113-130.e15, 2022 01 06.
Article in English | MEDLINE | ID: covidwho-1588150

ABSTRACT

mRNA-1273 vaccine efficacy against SARS-CoV-2 Delta wanes over time; however, there are limited data on the impact of durability of immune responses on protection. Here, we immunized rhesus macaques and assessed immune responses over 1 year in blood and upper and lower airways. Serum neutralizing titers to Delta were 280 and 34 reciprocal ID50 at weeks 6 (peak) and 48 (challenge), respectively. Antibody-binding titers also decreased in bronchoalveolar lavage (BAL). Four days after Delta challenge, the virus was unculturable in BAL, and subgenomic RNA declined by ∼3-log10 compared with control animals. In nasal swabs, sgRNA was reduced by 1-log10, and the virus remained culturable. Anamnestic antibodies (590-fold increased titer) but not T cell responses were detected in BAL by day 4 post-challenge. mRNA-1273-mediated protection in the lungs is durable but delayed and potentially dependent on anamnestic antibody responses. Rapid and sustained protection in upper and lower airways may eventually require a boost.

5.
N Engl J Med ; 385(25): 2348-2360, 2021 12 16.
Article in English | MEDLINE | ID: covidwho-1442847

ABSTRACT

BACKGROUND: The safety and efficacy of the AZD1222 (ChAdOx1 nCoV-19) vaccine in a large, diverse population at increased risk for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in the United States, Chile, and Peru has not been known. METHODS: In this ongoing, double-blind, randomized, placebo-controlled, phase 3 clinical trial, we investigated the safety, vaccine efficacy, and immunogenicity of two doses of AZD1222 as compared with placebo in preventing the onset of symptomatic and severe coronavirus disease 2019 (Covid-19) 15 days or more after the second dose in adults, including older adults, in the United States, Chile, and Peru. RESULTS: A total of 32,451 participants underwent randomization, in a 2:1 ratio, to receive AZD1222 (21,635 participants) or placebo (10,816 participants). AZD1222 was safe, with low incidences of serious and medically attended adverse events and adverse events of special interest; the incidences were similar to those observed in the placebo group. Solicited local and systemic reactions were generally mild or moderate in both groups. Overall estimated vaccine efficacy was 74.0% (95% confidence interval [CI], 65.3 to 80.5; P<0.001) and estimated vaccine efficacy was 83.5% (95% CI, 54.2 to 94.1) in participants 65 years of age or older. High vaccine efficacy was consistent across a range of demographic subgroups. In the fully vaccinated analysis subgroup, no severe or critical symptomatic Covid-19 cases were observed among the 17,662 participants in the AZD1222 group; 8 cases were noted among the 8550 participants in the placebo group (<0.1%). The estimated vaccine efficacy for preventing SARS-CoV-2 infection (nucleocapsid antibody seroconversion) was 64.3% (95% CI, 56.1 to 71.0; P<0.001). SARS-CoV-2 spike protein binding and neutralizing antibodies increased after the first dose and increased further when measured 28 days after the second dose. CONCLUSIONS: AZD1222 was safe and efficacious in preventing symptomatic and severe Covid-19 across diverse populations that included older adults. (Funded by AstraZeneca and others; ClinicalTrials.gov number, NCT04516746.).


Subject(s)
COVID-19/prevention & control , ChAdOx1 nCoV-19 , Vaccine Efficacy , Adolescent , Adult , Aged , Aged, 80 and over , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/epidemiology , ChAdOx1 nCoV-19/adverse effects , Chile/epidemiology , Double-Blind Method , Female , Humans , Immunogenicity, Vaccine , Male , Middle Aged , Peru/epidemiology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , United States/epidemiology , Young Adult
6.
Science ; 373(6561): 1372-1377, 2021 Sep 17.
Article in English | MEDLINE | ID: covidwho-1356908

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mutations may diminish vaccine-induced protective immune responses, particularly as antibody titers wane over time. Here, we assess the effect of SARS-CoV-2 variants B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma), B.1.429 (Epsilon), B.1.526 (Iota), and B.1.617.2 (Delta) on binding, neutralizing, and angiotensin-converting enzyme 2 (ACE2)­competing antibodies elicited by the messenger RNA (mRNA) vaccine mRNA-1273 over 7 months. Cross-reactive neutralizing responses were rare after a single dose. At the peak of response to the second vaccine dose, all individuals had responses to all variants. Binding and functional antibodies against variants persisted in most subjects, albeit at low levels, for 6 months after the primary series of the mRNA-1273 vaccine. Across all assays, B.1.351 had the lowest antibody recognition. These data complement ongoing studies to inform the potential need for additional boost vaccinations.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19 Vaccines/immunology , SARS-CoV-2/immunology , 2019-nCoV Vaccine mRNA-1273 , Adolescent , Adult , Aged , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/prevention & control , COVID-19 Vaccines/administration & dosage , Cross Reactions , Humans , Immune Evasion , Immunization, Secondary , Immunogenicity, Vaccine , Middle Aged , Time Factors , Young Adult
7.
Science ; 373(6561): eabj0299, 2021 Sep 17.
Article in English | MEDLINE | ID: covidwho-1334532

ABSTRACT

Immune correlates of protection can be used as surrogate endpoints for vaccine efficacy. Here, nonhuman primates (NHPs) received either no vaccine or doses ranging from 0.3 to 100 µg of the mRNA-1273 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine. mRNA-1273 vaccination elicited circulating and mucosal antibody responses in a dose-dependent manner. Viral replication was significantly reduced in bronchoalveolar lavages and nasal swabs after SARS-CoV-2 challenge in vaccinated animals and most strongly correlated with levels of anti­S antibody and neutralizing activity. Lower antibody levels were needed for reduction of viral replication in the lower airway than in the upper airway. Passive transfer of mRNA-1273­induced immunoglobulin G to naïve hamsters was sufficient to mediate protection. Thus, mRNA-1273 vaccine­induced humoral immune responses are a mechanistic correlate of protection against SARS-CoV-2 in NHPs.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , COVID-19/prevention & control , Immunogenicity, Vaccine , SARS-CoV-2/immunology , 2019-nCoV Vaccine mRNA-1273 , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antibody Affinity , Bronchoalveolar Lavage Fluid/immunology , Bronchoalveolar Lavage Fluid/virology , CD4-Positive T-Lymphocytes/immunology , COVID-19/immunology , COVID-19/virology , Female , Immunization Schedule , Immunization, Passive , Immunization, Secondary , Immunoglobulin G/immunology , Immunologic Memory , Lung/immunology , Lung/virology , Macaca mulatta , Male , Mesocricetus , Nasal Mucosa/immunology , Nasal Mucosa/virology , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/immunology , Vaccination , Vaccine Potency , Virus Replication
8.
Clin Trials ; 18(4): 391-397, 2021 08.
Article in English | MEDLINE | ID: covidwho-1247556

ABSTRACT

BACKGROUND: Although several COVID-19 vaccines have been found to be effective in rigorous evaluation and have emerging availability in parts of the world, their supply will be inadequate to meet international needs for a considerable period of time. There also will be continued interest in vaccines that are more effective or have improved scalability to facilitate mass vaccination campaigns. Ongoing clinical testing of new vaccines also will be needed as variant strains continue to emerge that may elude some aspects of immunity induced by current vaccines. Randomized clinical trials meaningfully enhance the efficiency and reliability of such clinical testing. In clinical settings with limited or no access to known effective vaccines, placebo-controlled randomized trials of new vaccines remain a preferred approach to maximize the reliability, efficiency and interpretability of results. When emerging availability of licensed vaccines makes it no longer possible to use a placebo control, randomized active comparator non-inferiority trials may enable reliable insights. METHODS: In this article, "hybrid" methods are proposed to address settings where, during the conduct of a placebo-controlled trial, a judgment is made to replace the placebo arm by a licensed COVID-19 vaccine due to emerging availability of effective vaccines in regions participating in that trial. These hybrid methods are based on proposed statistics that aggregate evidence to formally test as well as to estimate the efficacy of the experimental vaccine, by combining placebo-controlled data during the first period of trial conduct with active-controlled data during the second period. RESULTS: Application of the proposed methods is illustrated in two important scenarios where the active control vaccine would become available in regions engaging in the experimental vaccine's placebo-controlled trial: in the first, the active comparator's vaccine efficacy would have been established to be 50%-70% for the 4- to 6-month duration of follow-up of its placebo-controlled trial; in the second, the active comparator's vaccine efficacy would have been established to be 90%-95% during that duration. These two scenarios approximate what has been seen with adenovirus vaccines or mRNA vaccines, respectively, assuming the early estimates of vaccine efficacy for those vaccines would hold over longer-term follow-up. CONCLUSION: The proposed hybrid methods could readily play an important role in the near future in the design, conduct and analysis of randomized clinical trials performed to address the need for multiple additional vaccines reliably established to be safe and have worthwhile efficacy in reducing the risk of symptomatic disease from SARS-CoV-2 infections.


Subject(s)
COVID-19 Vaccines/therapeutic use , COVID-19/prevention & control , Randomized Controlled Trials as Topic/methods , Control Groups , Humans , Placebos , SARS-CoV-2
9.
Ann Intern Med ; 174(8): 1118-1125, 2021 08.
Article in English | MEDLINE | ID: covidwho-1181776

ABSTRACT

Multiple candidate vaccines to prevent COVID-19 have entered large-scale phase 3 placebo-controlled randomized clinical trials, and several have demonstrated substantial short-term efficacy. At some point after demonstration of substantial efficacy, placebo recipients should be offered the efficacious vaccine from their trial, which will occur before longer-term efficacy and safety are known. The absence of a placebo group could compromise assessment of longer-term vaccine effects. However, by continuing follow-up after vaccination of the placebo group, this study shows that placebo-controlled vaccine efficacy can be mathematically derived by assuming that the benefit of vaccination over time has the same profile for the original vaccine recipients and the original placebo recipients after their vaccination. Although this derivation provides less precise estimates than would be obtained by a standard trial where the placebo group remains unvaccinated, this proposed approach allows estimation of longer-term effect, including durability of vaccine efficacy and whether the vaccine eventually becomes harmful for some. Deferred vaccination, if done open-label, may lead to riskier behavior in the unblinded original vaccine group, confounding estimates of long-term vaccine efficacy. Hence, deferred vaccination via blinded crossover, where the vaccine group receives placebo and vice versa, would be the preferred way to assess vaccine durability and potential delayed harm. Deferred vaccination allows placebo recipients timely access to the vaccine when it would no longer be proper to maintain them on placebo, yet still allows important insights about immunologic and clinical effectiveness over time.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Clinical Trials, Phase III as Topic/standards , Randomized Controlled Trials as Topic/standards , Clinical Trials, Phase III as Topic/methods , Cross-Over Studies , Double-Blind Method , Drug Administration Schedule , Follow-Up Studies , Humans , Randomized Controlled Trials as Topic/methods , Research Design/standards , SARS-CoV-2 , Treatment Outcome
10.
Clin Trials ; 18(3): 335-342, 2021 06.
Article in English | MEDLINE | ID: covidwho-1063162

ABSTRACT

BACKGROUND: Recently emerging results from a few placebo-controlled randomized trials of COVID-19 vaccines revealed estimates of 62%-95% relative reductions in risk of virologically confirmed symptomatic COVID-19 disease, over approximately 2-month average follow-up period. Additional safe and effective COVID-19 vaccines are needed in a timely manner to adequately address the pandemic on an international scale. Such safe and effective vaccines would be especially appealing for international deployment if they also have favorable stability, supply, and potential for implementation in mass vaccination campaigns. Randomized trials provide particularly reliable insights about vaccine efficacy and safety. While enhanced efficiency and interpretability can be obtained from placebo-controlled trials, in settings where their conduct is no longer possible, randomized non-inferiority trials may enable obtaining reliable evaluations of experimental vaccines through direct comparison with active comparator vaccines established to have worthwhile efficacy. METHODS: The usual objective of non-inferiority trials is to reliably assess whether the efficacy of an experimental vaccine is not unacceptably worse than that of an active control vaccine previously established to be effective, likely in a placebo-controlled trial. This is formally achieved by ruling out a non-inferiority margin identified to be the minimum threshold for what would constitute an unacceptable loss of efficacy. This article not only investigates non-inferiority margins, denoted by δ, that address the usual objective of determining whether the experimental vaccine is "at least similarly effective to" the active comparator vaccine in the non-inferiority trial, but also develops non-inferiority margins, denoted by δo, intended to address the worldwide need for multiple safe and effective vaccines by satisfying the less stringent requirement that the experimental vaccine be "at least similarly effective to" an active comparator vaccine having efficacy that satisfies the widely accepted World Health Organization-Food and Drug Administration criteria for "worthwhile" vaccine efficacy. RESULTS: Using the margin δ enables non-inferiority trials to reliably evaluate experimental vaccines that truly are similarly effective to an active comparator vaccine having any level of "worthwhile" efficacy. When active comparator vaccines have efficacy in the range of 50%-70%, non-inferiority trials designed to use the margin δo have appealing properties, especially for experimental vaccines having true efficacy of approximately 60%. CONCLUSION: Non-inferiority trials using the proposed margins may enable reliable randomized evaluations of efficacy and safety of experimental COVID-19 vaccines. Such trials often require approximately two- to three-fold the person-years follow-up than a placebo-controlled trial. This could be achieved, without substantive increases in sample size, by increasing the average duration of follow-up from 2 months to approximately 4-6 months, assuming efficacy of the active comparator vaccine has been reliably evaluated over that longer duration.


Subject(s)
COVID-19 Vaccines/therapeutic use , COVID-19/prevention & control , Randomized Controlled Trials as Topic/methods , Equivalence Trials as Topic , Humans , Pandemics/prevention & control , SARS-CoV-2 , Sample Size , Single-Blind Method , Time Factors , Treatment Outcome
12.
Ann Intern Med ; 174(2): 221-228, 2021 02.
Article in English | MEDLINE | ID: covidwho-890662

ABSTRACT

Several vaccine candidates to protect against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection or coronavirus disease 2019 (COVID-19) have entered or will soon enter large-scale, phase 3, placebo-controlled randomized clinical trials. To facilitate harmonized evaluation and comparison of the efficacy of these vaccines, a general set of clinical endpoints is proposed, along with considerations to guide the selection of the primary endpoints on the basis of clinical and statistical reasoning. The plausibility that vaccine protection against symptomatic COVID-19 could be accompanied by a shift toward more SARS-CoV-2 infections that are asymptomatic is highlighted, as well as the potential implications of such a shift.


Subject(s)
COVID-19 Vaccines/therapeutic use , COVID-19/prevention & control , Randomized Controlled Trials as Topic/methods , Asymptomatic Infections , COVID-19/diagnosis , COVID-19 Testing , COVID-19 Vaccines/adverse effects , Clinical Trials, Phase III as Topic/methods , Humans , SARS-CoV-2 , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL